Gene Clustering in Time Series Microarray Analysis

نویسندگان

  • Camelia Chira
  • Javier Sedano
  • José Ramón Villar
  • Carlos Prieto
  • Emilio Corchado
چکیده

A challenging task in time series microarray data analysis is to identify co-expressed groups of genes from a large input space. The overall objective of this study is to obtain knowledge about the most important genes and clusters related to production and growth rate in a real-world microarray data analysis task. Various measures are engaged to evaluate the importance of each gene and to group genes based on their correlation with the output and each other. Some strategies for grouping and selecting genes are integrated resulting in several models tested for real biological data. All proposed models are tested on a real microarray data analysis problem and the results obtained are throughtly presented as well as interpreted from a biological perspective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Expression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow

Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...

متن کامل

Clustering Analysis of Gene Expression Time Series Data

Microarray is used to generate large amount of gene expression data and observing the differences among gene expression levels. Gene expression time series data represents the trend of gene behaviors. Clustering is a popular analysis for gene expression time series data. Genes in the same cluster have similar behavior. Cluster analysis helps people investigate the relativity among genes. We pro...

متن کامل

Multiple gene expression profile alignment for microarray time-series data clustering

MOTIVATION Clustering gene expression data given in terms of time-series is a challenging problem that imposes its own particular constraints. Traditional clustering methods based on conventional similarity measures are not always suitable for clustering time-series data. A few methods have been proposed recently for clustering microarray time-series, which take the temporal dimension of the da...

متن کامل

TimeClust: a clustering tool for gene expression time series

UNLABELLED TimeClust is a user-friendly software package to cluster genes according to their temporal expression profiles. It can be conveniently used to analyze data obtained from DNA microarray time-course experiments. It implements two original algorithms specifically designed for clustering short time series together with hierarchical clustering and self-organizing maps. AVAILABILITY Time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013